Data validation with unknown variance matrix
نویسندگان
چکیده
منابع مشابه
Data validation with unknown variance matrix
The data validation consists in obtaining an estimation of the true values of process variables that respect the balance equations. Generally, the procedure needs the knowledge of the variance of the measurement errors; unfortunately, in most situations, we only have a rough estimation of this variance and therefore the data validation procedure gives results depending on this poor estimation. ...
متن کاملHigh dimensional matrix estimation with unknown variance of the noise
Assume that we observe a small set of entries or linear combinations of entries of an unknown matrix A0 corrupted by noise. We propose a new method for estimating A0 which does not rely on the knowledge or an estimation of the standard deviation of the noise σ. Our estimator achieves, up to a logarithmic factor, optimal rates of convergence under the Frobenius risk and, thus, has the same predi...
متن کاملBehrens-Fisher Problem with One Variance Unknown
This paper presents the generalized p-values for testing the Behrens-Fisher problem when one variance is unknown. We also derive a closed form expression of the upper bound of the proposed generalized p-value. Keywords—Generalized p-value, hypothesis testing, upper bound.
متن کاملGaussian Model Selection with Unknown Variance
Let Y be a Gaussian vector whose components are independent with a common unknown variance. We consider the problem of estimating the mean of Y by model selection. More precisely, we start with a collection S = {Sm, m ∈M} of linear subspaces of R and associate to each of these the least-squares estimator of μ on Sm. Then, we use a data driven penalized criterion in order to select one estimator...
متن کاملGaussian Model Selection with an Unknown Variance
Let Y be a Gaussian vector whose components are independent with a common unknown variance. We consider the problem of estimating the mean μ of Y by model selection. More precisely, we start with a collection S = {Sm, m ∈M} of linear subspaces of R and associate to each of these the least-squares estimator of μ on Sm. Then, we use a data driven penalized criterion in order to select one estimat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Chemical Engineering
سال: 1999
ISSN: 0098-1354
DOI: 10.1016/s0098-1354(99)80150-1